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The dynamical behavior of the nonlinear interaction of quantum Langmuir waves �QLWs� and quantum
ion-acoustic waves �QIAWs� is studied in the one-dimensional quantum Zakharov equations. Numerical simu-
lations of coupled QLWs and QIAWs reveal that many coherent solitary patterns can be excited and saturated
via the modulational instability of unstable harmonic modes excited by a modulation wave number of mo-
noenergetic QLWs. The evolution of such solitary patterns may undergo the states of spatially partial coherence
�SPC�, coexistence of temporal chaos and spatiotemporal chaos �STC�, as well as STC. The SPC state is
essentially due to ion-acoustic wave emission and due to quantum diffraction, while the STC is caused by the
combined effects of SPC and quantum diffraction, as well as by collisions and fusions among patterns in
stochastic motion. The energy in the system is strongly redistributed, which may switch on the onset of weak
turbulence in dense quantum plasmas.
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I. INTRODUCTION

Quantum plasma phenomena are relevant in ultrasmall
electronic devices and micromechanical systems �1�, in
dense laser-plasmas and microplasmas �2�, as well as in
dense astrophysical objects �3�. Many collective processes
have been investigated in this area �e.g., see Refs. �4–10��.
New quantum modes have also been identified for ultracold
dusty plasmas �see, e.g., Refs. �11–16��. The recent develop-
ments include the spin effects �17–19� in nonrelativistic
quantum plasmas, as well as in the associated magnetohydro-
dynamic equations �20�, with possible important applications
to solid density plasmas, as well as in the vicinity of pulsars
and magnetars. In addition, there are new experimental stud-
ies �21� of weakly degenerate quantum plasmas in a gaseous
regime. The formations of dark solitons as well as quantum
vortices are also found in quantum electron plasmas �22�.
These nonlinear nanostructures can efficiently transport in-
formation over short distances. Furthermore, Dastgeer and
Shukla �23,24� studied two- and three-dimensional aspects of
electron fluid turbulence at nanoscales. A review on quantum
plasma models and their range of validity can be found in
Ref. �25�.

The quantum Zakharov equations �QZEs� �26�, which de-
scribe the nonlinear interaction of high-frequency quantum
Langmuir and low-frequency quantum ion-acoustic waves,
extend the classical Zakharov system �27� to the quantum
realm. The QZEs are deduced from a multiple time-scale
method applied to a set of quantum hydrodynamic �QHD�
equations under quasineutral assumption. Applications can
be found for quantum decay and four-wave instabilities,
where significant departures from the classical dispersion re-

lations are found �26�. Notice that the QZEs do not reduce, in
the adiabatic limit, to a nonlinear Schrödinger equation
�NLSE� for the envelope electric field �26�. Rather, the adia-
batic limit produces a coupled system for the envelope elec-
tric field and the density fluctuation, whose complete integra-
bility is not assured at all. Further developments on the QZEs
involve the effects of statistical superpositions of Langmuir
waves, where the combined effect of partial coherence and
quantum corrections tends to enhance the modulational in-
stability �MI� �28�. The variational formalism on the QZEs is
also carried out recently by Haas �29� to investigate its dy-
namical behaviors. More recently �30�, a few mode expan-
sions were used to substitute the primary partial differential
equations system by a set of ordinary differential equations
for the temporal dynamics �31,32�. This reduced finite-
dimensional system was shown to exhibit hyperchaos �more
than one positive Lyapunov exponent�.

The pattern formation in spatially extended nonequilib-
rium dynamical systems has become a major frontier area in
science �33�. The existence of spatiotemporal chaos �STC�
characterized by its extensive incoherent �irregular� pattern
dynamics in both space and time significantly enriches the
study of pattern formation. STC has been studied numeri-
cally and experimentally in many physical systems �see, e.g.,
Ref. �33��. However, the mechanism leading to STC still
remains unclear. Transition to STC-like phenomena with co-
existing temporal chaos �TC� and spatially partial coherence
�SPC� states form solitary patterns excited by a modulation
wave number in classical plasma systems through the MI of
a spatially homogeneous background field has been investi-
gated in the past �34,35�. Recently, the evolution of pattern
dynamics and STC in the classical conserved Zakharov
equations have been studied numerically by He et al.
�36,37�.

The primary goal of this work is to reconsider the QZEs
and to investigate the electron quantum tunneling effect �de-
scribed by the parameter H� on the formation of many soli-
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tary patterns, the existence of SPC state, the coexistence of
TC and STC, as well as the state of STC. The combined
effects of SPC and electron quantum tunneling, as well as
collisions and fusion among solitary patterns, are the main
causes of STC.

II. QUANTUM ZAKHAROV EQUATIONS AND
EVOLUTION OF STC

A. Quantum Zakharov equations

The one-dimensional QZEs read �26�

i
�E

�t
+

�2E

�x2 − H2�4E

�x4 = nE , �1�

�2n

�t2 −
�2n

�x2 + H2�4n

�x4 =
�2�E�2

�x2 , �2�

where E=E�x , t� is the envelope of the high-frequency Lang-
muir wave electric field and n=n�x , t� is the plasma density
fluctuation �measured from its equilibrium value�. Moreover,
H=��i /�BTe is a parameter expressing the ratio between the
phononic energy density and the electron thermal energy
density, where � is the Planck’s constant divided by 2�, �B is
the Boltzmann constant, Te is the electron temperature, and
�i=�n0e2 /mi�0 is the ion plasma frequency with n0 denoting
the constant background plasma number density and mi is the
ion mass. The electric field E has been normalized by
�16men0kBTe /me�0 and the density n by 4men0 /mi, where me
being the electron mass. The space and time variables are in
units of ��e /2��mi /me and mi /2me�e, where �e

=�n0e2 /me�0 is the electron plasma frequency and �e is the
electron Debye radius. The formal classical limit is obtained
for H�0, yielding the original Zakharov system. For more
details on the derivation of the system as well as for sample
applications, see Ref. �26�. The classical Zakharov equations
have been widely used to study solitons, chaos, and plasma
turbulence in many areas of plasma physics �e.g., Refs.
�35,38��. It is thus of current interest to investigate the pat-
tern dynamics as well as the transition to STC in QZEs,
which may be useful in understanding the onset of electro-
static plasma-wave turbulence in laboratory and astrophysi-
cal quantum plasmas.

The linear stability analysis of the perturbation of the
form exp�ikx− i�t� from a spatially homogeneous field E0 of
a monoenergetic Langmuir wave for Eqs. �1� and �2� gives
the growth rate of the MI �28� as

� =
1
�2

�H̄k2�H̄2 + 8�E0�2 − 2H̄4k2�2 − H̄2k2�

− H̄2k2�1 + H̄2k2��1/2, �3�

where H̄=1+H2k2. The growth rate tends to be smaller for
increasing values of the quantum parameter H and is maxi-
mum at H=0. Equations �1� and �2� are not completely inte-
grable, however they admit two kinds of fixed points: a cen-
ter at �0,0� and a saddle at �E0 ,0�.

B. Evolution of STC

We numerically solve Eqs. �1� and �2� to investigate the
global behaviors and choose the initial condition to add a
small spatial inhomogeneity at t=0 on the spatial homoge-
neous state �0= �Re E , Im E ,n ,�tn�t=0= �E0 ,0 ,0 ,0� as fol-
lows �39�:

E�x,0� = E0�1 + 	 cos�kx��, n�x,0� = − �2E0k	 cos�kx� ,

�4�

such that E0= �k /�2��1+H2k2� holds. Here E0 represents the
amplitude of the pump Langmuir wave and 	 is a constant of
the order of 10−3 to emphasize that the perturbation is very
small. The initial condition corresponds to slightly perturbed
plane Langmuir wave solution of the QZEs and ensures that
the manifolds in the phase space will locally lie in a saddle
subspace. The QZEs �1� and �2� were simulated using a stan-
dard fourth-order Runge-Kutta scheme. A relatively large
time step �dt=0.001� and mesh size �dx=0.1� were chosen in
an attempt to study the late time large wavelength behavior
of Eqs. �1� and �2�. The spatial derivatives were approxi-
mated with centered second-order difference approximations.
For small values of H�
0.5�, we used the spatial domain
−100
x
100 and for the large values of H��0.5�, we used
the domain as −150
x
150.

The master mode k, where 0�k��2E0, can, in principle,
result in the excitation of N−1 unstable harmonic modes

where N= �ḱ−1�, with ḱ=k /�2E0. There may exist many soli-
tary patterns with spatially modulated length lm=L /m, where
m=1 is for master mode �l1=L=2� /k� and m=2,3 , . . . ,M
are for the unstable harmonic modes. As a result, the enve-
lope E can be expressed as

E�x,t� = �
m=1

M

Em�t�exp�imḱx� + �
m=M+1



Em�t�exp�imḱx� ,

�5�

where the first term on the right side of Eq. �5� comes from
the master mode and unstable harmonic modes with M �N
−1 being due to pattern selection, whereas the second term is
due to the nonlinear interaction.

The profiles of the electric field and the density fluctua-
tions at the end of simulation are shown in Fig. 1 for k
=0.7 and H=0. We observe an excited electric field of the
order �E�	2.4 highly correlated with density depletion n	
−6.9 or n /n0	−0.015. It is observed that there exist critical
values of k and H for which the motion of the coherent
solitary patterns is the temporal recurrence �periodic� or the
pseudorecurrence �quasiperiodic� when the unstable wave
number lies in 0�k�0.9 for H=0 and that of the solitary
pattern is STC when k�0.9 for H=0 and for k�0.7, H
�0.5. The motion of the center of the solitarylike patterns
whose initial peak is located at x= �mL, m=0,1 ,2 , . . . ex-
hibits stochastic behavior. The amplitude of the solitary pat-
tern oscillates and its width varies temporarily. The system is
in TC and the spatial behavior is of SPC. It has been pointed
out that the resonant overlapping may be the cause for the
TC �34�.

A. P. MISRA AND P. K. SHUKLA PHYSICAL REVIEW E 79, 056401 �2009�

056401-2



For k=0.7 and H=0, many solitary pattern trains appear
from the master mode and unstable harmonic modes �see
Fig. 2�. In this case, solitons being strong can be seen after a
long interval of time. The central stationary soliton, in par-
ticular, disappears right after a collision that sets it into a few
oscillations. The stochastic motion of the trains leads to the
collision between the neighboring coherent solitary patterns
and fuse into a new incoherent pattern with the strengthened
amplitude and the narrower width. At the same time, strong
ion-acoustic wave emission is observed and the solitary pat-
terns are seriously distorted. The occurrence of such an ion-
acoustic wave emission due to the resonant interaction of
central stationary soliton with the linear ion-acoustic waves

propagating with the soliton Mach speed was observed by
Karpman and Schamel �40� in the classical Zakharov system,
where only the dispersive effects were considered due to
particles’ charge separation. In the quasineutral classical
plasma �i.e., without the charge separation and quantum dif-
fraction effects�, since the linear sound modes propagate
with the speed cs=�kBTe /mi greater than the soliton Mach
speed, similar interaction of the Langmuir soliton with the
sound wave may not be possible �40�. In quasineutral classi-
cal Zakharov system, strong ion-acoustic wave emission is
possible due to stochastic motion of the center of the soli-
tarylike patterns as observed in Fig. 2. In the quantum Za-
kharov system where only the dispersion is provided by the
quantum diffraction effects, the collisions of the solitary pat-
terns with the master one take place and then fuse into an-
other new ones as can be seen from Fig. 3 below. For k
=0.7 and H=0.5, Fig. 3 shows that at t
110, two solitary
patterns, initially peaked at x
500 and x
700, collide and
fuse into a new pattern with a strengthened amplitude and
narrower width. At t
150, other two patterns, initially
peaked at x
400 and x
650, collide with the master pat-
terns at x
350 and x
700, respectively, and then fuse into
another new ones. Note that after these collisions, new pat-
terns produced by the four harmonic patterns are coexistent
with the distorted master patterns.

Different feature can be observed for increasing the value
of H=0.6 and fixed k=0.7 �see Fig. 4�. Here at t
120, three
solitary patterns initially peaked at x
450, 550, and 650
collide to form two new solitary patterns which again collide
and fuse to form another new one with strengthened ampli-
tude. Two other collisions can also be observed at t
190.
However, from the above observations we note that a few
collisions do not seem to be enough to cause STC as can be
seen from the spatial correlation function �37�. Thus, the co-
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FIG. 1. �Color online� The profiles of the electric field �the red
line �upper panel�� and the density fluctuations �blue line �lower
panel�� for k=0.7 and H=0. This shows the pattern selection in the
process of the pattern formation. The positive-ion density perturba-
tion is distributed among the patterns formed.

FIG. 2. �Color online� Contours of �E�x , t��=const for the same
values as in Fig. 1. This shows that many solitary pattern trains
appear from the master mode and unstable harmonic modes.

FIG. 3. �Color online� Contours of �E�x , t��=const for k=0.7 and
H=0.5. This shows that at t
110, two solitary patterns, initially
peaked at x
500 and x
700, collide and fuse into a new pattern
with a strengthened amplitude and narrower width. At t
150, other
two patterns, initially peaked at x
400 and x
650, collide with
the master patterns at x
350 and x
700, respectively, and then
fuse into another new ones. The system is still in the coexistence of
TC and STC.
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herence of the system is still retained so that SPC still exists
in the system. If we now consider the case of increased H
=0.7 and k=0.7, many unstable modes are excited and satu-
rated to form initially different many solitary patterns as can
be seen from Fig. 5. Collisions and fusion among some trains
take place soon and the new incoherent pattern trains are
formed accompanying strong ion-acoustic emission. Then
these incoherent patterns collide with others again and again
after some time. Finally, a few solitary pattern trains are
fused into a number of incoherent patterns in stochastic mo-
tion. A certain amount of the system energy is carried out by

the incoherent patterns, as well as many stable harmonic

modes �ḱ�1� are excited through nonlinear interactions. The
system energy in the STC state is thus spatially redistributed
in the process of pattern collisions, fusion, and distortion.
Hence, collisions and fusion of many pattern trains can lead
to the existence of STC state, if initially there exist many
unstable modulation lengths to form patterns. There should
then exist critical values of both k and H where the transition
from TC to STC can occur. Similar phenomena can also be
well observed by considering the different values of k and H.
As for example, for k=0.9, H=0, Fig. 6 shows that two
solitary patterns excited at x
425 and x
620 in time t
=145 collide and fuse to form another pattern, coexistent
with master modes, with strengthened amplitude and nar-
rower width. However, if we consider case of increased H
�0.4 with k=0.9, we can observe many solitary patterns
which after some time collide, fuse, and distort as can be
seen from Fig. 7 for H=0.7, k=0.9.

For the infinite-dimensional system, the adiabatic limit is
obtained by disregarding the second-order time derivative of
the density fluctuation in Eq. �2�. The resulting equations
then read

i
�E

�t
+

�2E

�x2 + �E�2E = H2� �4E

�x4 + E
�2n

�x2� , �6�

H2�2n

�x2 − n = �E�2. �7�

In the formal classical limit H→0, Eq. �7� decouples becom-
ing the familiar NLSE. In the quantum case, however, even
the adiabatic limit shows a coupled nonlinear system, whose
properties remains to be fully understood but beyond the
scope of the present work. However, the system can be de-

FIG. 4. �Color online� Contours of �E�x , t��=const for k=0.7, but
H=0.6. Different features can be observed �in comparison to Fig.
1�. Here at t
120, three solitary patterns initially peaked at x

450, 550, and 650 collide to form two new solitary patterns
which again collide and fuse to form another new one with
strengthened amplitude. Two other collisions can also be seen at t

190. The SPC state still exists in the system.

FIG. 5. �Color online� Contours of �E�x , t��=const for k=0.7 and
H=0.7. Here many solitary patterns are formed. After some time
collision and fusion among some trains take place and the new
incoherent pattern trains are formed accompanying strong ion-
acoustic emission; the STC state emerges.

FIG. 6. �Color online� Contours of �E�x , t��=const for k=0.9 and
H=0.0. Similar phenomena can be observed as in Fig. 2. This
shows that two solitary patterns excited at x
425 and x
620 in
time t=145 collide and fuse to form another pattern, coexistent with
master modes, with strengthened amplitude and narrower width.
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coupled in the consideration of simultaneously semiclassical
�H�1� as well as adiabatic limit as

i
�E

�t
+

�2E

�x2 + �E�2E = H2� �4E

�x4 − E
�2�E�2

�x2 � . �8�

Equation �8� can be used to study perturbations of the
classical nonlinear schrödinger �NLS�–soliton solutions. The
numerical solutions of Eq. �8� are presented in Fig. 8 for
different values of H. These figures show the contour plots
for �E�x , t�� for H=0 and H=0.15. We observe that solitons
can be identified during a large period of time. The central
stationary soliton, which disappears in the classical case �see
upper panel of Fig. 8�, becomes strong in the semiclassical
case �H=0.15, lower panel of Fig. 8�. The pattern evolutions
show that solitons are stronger in the semiclassical case,
where the quantum coupling parameter is ultimately respon-
sible for such existence of solitons. Thus, in contrast to the
quantum Zakharov cases, the NLS solitons are virtually in-
destructible in classical as well as semiclassical cases.

III. CONCLUSION

A simulation study of the quantum Zakharov system has
been performed to show that many coherent solitary patterns
can be excited and saturated via the MI of unstable harmonic
modes excited by a modulation wave number of monoener-
getic quantum Langmuir waves �QLWs�. It is observed that
there exist critical values of k and H for which the motion of
the coherent solitary patterns is the temporal recurrence �pe-
riodic� or the pseudorecurrence �quasiperiodic� when the un-
stable wave number lies in 0�k�0.9 for H=0 and that of
the solitary pattern is STC when k�0.9 for H=0 or for k
�0.7, H�0.5. If few harmonic patterns coexist with the
master mode, the system will be in TC and SPC, and if many
harmonic patterns occur in the early phase, the system may
experience SPC state. Collisions and fusion among some

trains take place and the new incoherent pattern trains are
formed accompanying strong ion-acoustic wave emission;
the STC state then emerges. As a result, the system energy in
the STC state is spatially redistributed in the process of pat-
tern collision, fusion, and distortion, which may switch on
the onset of weak turbulence in quantum plasmas.
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FIG. 7. �Color online� Contours of �E�x , t��=const for k=0.9, but
H=0.7. Many solitary patterns are formed, which after some time
collide, fuse, and distort as in Fig. 5. The system is in STC.

FIG. 8. �Color online� Contours of �E�x , t��=const for H=0.0
�upper panel� and for H=0.15 �lower panel� �The numerical solu-
tions of Eq. �25��. Notice that solitons can be observed during a
large period of time. The central stationary soliton, which disap-
pears in the classical case �upper panel�, becomes strong in the
semiclassical case �lower panel�.
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